If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-23x-12=0
a = 1; b = -23; c = -12;
Δ = b2-4ac
Δ = -232-4·1·(-12)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{577}}{2*1}=\frac{23-\sqrt{577}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{577}}{2*1}=\frac{23+\sqrt{577}}{2} $
| -3-3x=-492x+7) | | 4x+3=9x+4 | | 3y-1=5y+.5 | | -5(x+1)+3x+2=5+4 | | 14x-44=26 | | -4n+8=2n-18 | | 10–s=4 | | 7(x-3)^2-52=11 | | 10.5+x/2=x | | 3(x+2)=11-5 | | 4n+8=2n-18 | | 3y(y-2)=12y | | 2(x+5)^2-32=72 | | 11x+49x+6=130 | | 2x+x+38=180 | | √2x=8 | | 0.38w-0.75=0.13w+0.63 | | W²-34w+264=0 | | x+25=51, | | (4x+6)+5x=(10x-7) | | (7x+10)+(11x-14)=180 | | 2x=16+x | | c=2.54×10 | | 3=7x+8 | | 15x+7-15x=7 | | 2w^2-11w+15=55 | | 141+7x+15=180 | | |3x+13|=x-9 | | 0=32t-0.8t^2 | | 11+17x=18x+4 | | z–5=19 | | -8p+8=-20-10p |